Поддержка

Выбор входного импеданса осциллографа: 50 Ом или 1 МОм?

Выбор входного импеданса осциллографа: 50 Ом или 1 МОм?

Вариант отображения
Цифровые осциллографы серии HDO9000R
Просмотр
Teledyne LeCroy: Обзорный каталог осциллографов - 2020
Просмотр
Цифровые осциллографы серии WaveMaster 8 Zi-B-R
Просмотр
Teledyne LeCroy: осциллографические пробники и аксессуары к ним 2016
Просмотр
LabMaster 10 Zi-A High Bandwidth Modular Oscilloscopes 20 GHz – 100 GHz
Просмотр
Цифровой осциллограф LabMaster 10-100Zi
Просмотр
Осциллографы высокого разрешения HDO6000R (MS) / HDO4000R (MS) / HDO8000R (MS)
Просмотр
Цифровые осциллографы серии WaveSurfer 3000R
Просмотр
Цифровые осциллографы серии WaveJet Touch R
Просмотр
Цифровые осциллографы серии WaveSurfer 10R
Просмотр
Teledyne LeCroy: WaveStation™ Function/Arbitrary Waveform Generators (en)
Просмотр
Teledyne LeCroy: тележки для осциллографов
Просмотр
Цифровые осциллографы серии WavePro 7 Zi-A
Просмотр
Цифровые осциллографы серии WaveMaster 8 Zi-A, SDA 8 Zi-A
Просмотр
Дифференциальные пробники серии DH (13 GHz – 25 GHz) (en)
Просмотр
Цифровые осциллографы серии WaveRunner 9000R
Просмотр
Осциллографы высокого разрешения WaveSurfer 4000HDR
Просмотр
Осциллографы высокого разрешения WavePro HDR
Просмотр

The HDO9000 with HD1024 Technology provides exceptional signal fidelity with 10-bit resolution and a superior oscilloscope experience to deliver faster time to insight.

WaveSurfer 10 Oscilloscop
3 видео
HDO9000
2 видео
High Definition Oscilloscope
12 видео
I2C &SPI
2 видео
LeCroy LabNotebook
1 видео
Mixed Signal Oscilloscope
6 видео
PCI Express Storage Webinar
2 видео
SAS / SATA Sierra Analyzer & Jammer
10 видео
SAS SSD Webinar
1 видео
Serial Data Analysis
1 видео
SierraNet Introduction Video Demos
2 видео
SPARQ Video Series
5 видео
Summit T3-16 Analyzer Introduction series of video demos
5 видео
Teledyne LeCroy Kibra 480 DDR3 & DDR4 Protocol Analyzer
6 видео
Teledyne LeCroy WaveScan
3 видео
Teledyne LeCroy XDEV Customization
1 видео
USB 3.0 and 3.1 Webinar
1 видео
Voyager USB 3.0 Introduction video demos
7 видео
WaveJet Touch
4 видео
WaveMaster 8 Zi Oscilloscopes
3 видео
WavePro 7 Zi Oscilloscopes
3 видео
WaveRunner 8000
2 видео
WaveSurfer 3000
10 видео
WaveSurfer Xs-B Oscilloscope Overview
10 видео
Dr. Eric Bogatin (03.08.2020г)

Если в Вашей модели осциллографа предусмотрена возможность выбора входного сопротивления - 50 Ом или 1 МОм, то какой входной импеданс выбрать?

Ниже изложены рекомендации о том, в каких случаях каждый из этих номиналов сопротивления должен быть использован (согласованный вход или высокоомный).

The same signal from a fast

Рис. 1. Один и тот же входной сигнал из буферной памяти на экране осциллографу: слева – измеренный при помощи 50 Ом кабеля и входном сопротивлении 1 МОм, справа - при согласованном подключении (50 Ом кабель @ на 50 Ом входе).

Используйте вход 1 МОм при работе с пробником 10x

Для случая использования осциллографического пробника с коэффициентом ослабления 10x единственной возможной настройкой входного канала может быть только выбор высокоомного импеданса 1 МОм. У пользователя нет другого выбора.

Если полоса частот исследуемого сигнала ниже ~200 МГц, то для всех приложений общего назначения пробник 10x будет наиболее оптимальным для использования с прибором. Недостатком пробника с ослаблением 10x является то, что он уменьшает соотношение «сигнал- шум» на 20 дБ, т.к. ослабляет полезный информационный сигнал в 10 раз.

В осциллографах с 12-битным разрешением АЦП шум входного тракта составляет около 1 мВпик-пик. Это напряжение соответствует чувствительности на входе щупа пробника в положении 10 мВ/дел, как наиболее чувствительной настройки коэффициента вертикального усиления. Если возникает задача измерить низкоуровневые сигналы, которые по амплитуде меньше, чем ~100 мВ, то пробник 10x будет ограничивать чувствительность измерительной системы. В этом случае лучше рассмотреть возможность использования подключения к исследуемому устройству (ИУ) «напрямую» (1х) или использовать активный осциллографический пробник для тестирования.

Используйте 1 МОм для сигналов малых уровней с подключением по кабельному соединению

Если Ваше тестовое приложение связано с измерением сигналов очень низкого уровня, то рекомендуется использовать непосредственное подключение ИУ к осциллографу с помощью коаксиального РЧ кабеля с выбором входного сопротивления 1 МОм. При этом Вы будете располагать оптимальной чувствительностью усилителя входного тракта во всем диапазоне частот.  При выборе 1 МОм оператор сможет измерять входное напряжение до 50 В с большим динамическим диапазоном смещения (offset) и настройкой связи по каналу – «AC» (закрытый вход).

Недостатком использования «прямого» кабельного соединения при выборе Rвх =1 МОм является то, что теперь пользователь может получить в наблюдаемом сигнале проявления эффекта отражения из-за неоднородности, как это показано на рис. 1.

Отражения и выбросы всегда случаются, когда сигнал в цепи передачи сталкивается с мгновенным изменением импеданса (неоднородностью тракта). Если время нарастания источника сигнала примерно в 4 раза больше, чем показателя временной задержки в соединительном кабеле, то отражения будут распределены во времени при нарастании фронта или на спаде сигнала. Тем самым проявление артефактов отражения будет незначительным.

В случае сигналов с не быстрым временем нарастания (малая крутизна фронта), или при подключении с помощью короткого кабеля, это не приведет к возникновению отражений, так как с помощью выбора 1 МОм входного импеданса осциллографа согласование будет наиболее оптимальным.  Это обеспечивает наблюдение как сигналов высокого напряжения, так и низкоуровневых сигналов, позволит применить большее постоянное смещение (DC offset), а также использовать канал осциллографа в режиме типа связи по входу «закрыт» (AC coupling).

Входное сопротивление 1 МОм является предпочтительным параметром для сигналов с относительно длительным временем нарастания или сигнала в невысокой полосе частот.

В насколько низком диапазоне?  Если типичная длина соединительного РЧ кабеля составляет 1 метр, то временная задержка в кабеле при распространении сигнала составляет ~5 нс. Это означает, что для анализа фронта сигнала с временем нарастания в 4 раза большим ~ 20 нс (4 х 5 нс), входное сопротивление 1 МОм будет просто отличным. Эти физические характеристики как раз и определяют полосу пропускания сигнала как отношение 0,35/20 нс = 17 МГц. Если сигналы Вашего измерительного приложения имеют максимальную частоту ниже 20 МГц, то при анализе можно не опасаться использования входного импеданса 1 МОм.

Используйте 50 Ом соединительные кабели и вход 50 Ом для исключения отражений

Реальная причина почему все современные осциллографы имеют вариант выбора входного импеданса 50 Ом — это необходимость максимального снижения отражений от источника сигнала подключаемого ко входу прибора с помощью коаксиального кабеля с волновым сопротивлением также 50 Ом, например, таких типов как кабель RG58 или RG174.

Если при соединении используется кабель 50 Ом, то каждый отсчет сигнала будет отображаться на экране как истинное мгновенное значение на согласованной нагрузке 50 Ом. Когда сигнал во входном тракте прибора поступает при таких условиях, то это позволяет выполнить сохранение мгновенных значений напряжение при неизменном импедансе без отражения, что гарантирует точность и чистоту сигнала. Оператор наблюдает на экране форму фактического напряжения, поступившего во входной тракт осциллографа по соединительному кабелю от источника.

Во всех осциллографахTeledyne LeCroy специально добавлен вариант входного импеданса 50 Ом, так как компания предполагала, клиенты будут использовать для подключений сигналов 50 Ом кабели. Это означает, что для сигналов в верхней части диапазона осциллографа, вплоть до максимального значения полосы пропускания, следует использовать настройку входного импеданса - 50 Ом. Это обеспечит максимальную частоту анализа входного сигнала при сохранении минимального уровня шума.

Осторожно!

Однако, если выбраны настройки канала: открытый вход или уровень ср. кв. значения анализируемого напряжения близок к значению 5 В или превышает его, то при таких условиях входной импеданс 50 Ом использовать в осциллографе - нельзя!

Резистор 50 Ом находится внутри осциллографа в цепи входного тракта, перед усилителем АЦП. Он способен рассеивать только 0,5 Вт поступающей мощности. Если на него будет подан уровень ≥0,5 Вт, то резистор будет сильно нагреваться и даже подвержен переходу в режим перегрева. В крайнем случае при значительном превышении мощности этот резистор может быть термически поврежден, т.е. сгореть (в буквальном смысле – «слететь с платы»).

Ограничение на уровень рассеиваемой мощности 0,5 Вт распространяется на входные сигналы с уровнем напряжения 5 Вскз. Это допустимо в случае анализа, например, сигнала с уровнем постоянного напряжения 5 В или сигнала 10 Впик-пик с коэффициентом заполнения 50% (duty cycle). Если необходимо подключиться к сигналам более высокого напряжения (> 5 В), особенно на шинах различных номиналов электропитания питания, следует рассмотреть вопрос об использовании прикладного осциллографического пробника, такого как RP4030, который предназначен для анализа шин и выводов питания постоянного напряжения до 30 В.

Возврат к списку